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1 Numerical Modeling of Impact Cratering

1.1 introduction

The purpose of this document is to provide a brief but reasonably clear and intuitive intro-
duction to the physical processes and numerical procedures used in hydrocode modeling of
impact cratering phenomena. Because explaining these processes and procedures in detail
requires a good deal of understanding of physics and applied mathematics, the presenta-
tion here relies on intuitive derivations of equations in continuum mechanics and simplified
descriptions of numerical procedures. There are many excellent rigorous developments of
continuum mechanics available for those seeking greater detail and rigor, as well as detailed
resources on hydrocode modeling, including Zukas (2004) and (Benson, 1992), which can be
sought for further details.

1.1.1 what hydrocodes are

Hydrocodes are code packages that can be used for the numerical solution of mathematical
models of high energy wave propagation phenomena. This includes the ability to accurately
model shock waves. Hydrocodes also include facilitility to solve mathematical models of struc-
tural dynamics. This makes them useful for modeling a wide variety of physical phenomena,
including fluid-structure interactions, vehicular collisions, explosions, shock hardening, and
lunar and planetary impacts. Of course, the particular interest here is in the use of hy-
drocodes to model the various processes involved in the formation of impact craters from
small fast-moving objects striking planets and moons.

1.1.2 what hydrocodes do

Hydrocodes compute approximate solutions to a dynamical material model, which can in-
volve numerous interacting materials with very different physical properties. This model is
formulated using the equations of continuum mechanics, the branch of classical mechanics
that deals with the statics and dynamics of continuous materials, augmented with models of
shock formation and dynamics. Thus, the user is responsible for constructing an appropriate
model of some target phenomenon and for specifying equations that govern how the materials
in the system behave under the range of conditions experienced by the simulated system.

1.1.3 what hydrocodes don’t do

Hydrocodes do not, however, provide a black box that instructions can be fed to and out pops
a simulation or explanation. These code packages require a great deal from the user in terms
of understanding of the underlying physics, the associated mathematics and the numerical
methods used to perform calculations. Hydrocodes also do not wear their limitations on their
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sleeves. Consequently, a good deal of time, experimentation and experience is required to be
able to use a hydrocode package to accurately model shock wave phenomena.

1.1.4 how hydrocodes work

The subject of this document, then, is to give a very brief outline of the physics and numerical
methods needed to understand how hydrocode packages solve dynamical material equations.
We begin in the next section with an intuitive treatment of the equations of continuum me-
chanics that are used to model macroscopic physical phenomena. This section is followed by
a section explaining the numerical methods used to solve continuum mechanics equations,
as well as some of the features of the numerical methods employed specifically by hydrocode
packages. We conclude this document with a brief survey of the use of hydrocode packages
to model various features of the impact cratering process.

It is hoped that someone reading this who is unfamiliar with the physics, numerics in gen-
eral and hydrocodes in particular can take away a basic level of understanding of hydrocodes
and their use to study impact cratering phenomena. Enough in terms of introduction, then,
let us begin.



2 Mathematical Modeling of Continuous
Media

In order to accurately model the dynamical behaviour of materials involved in impact cra-
tering processes it is necessary to select a set of physical laws that govern the behaviour of
the materials involved in the process and the forces and conditions that they are subject to.
This amounts to the construction of a number of interdependent equations that determine
how the physical quantities that characterize the relevant behaviour evolve over time. In this
section we will consider the both the physical quantities that are relevant in impact cratering,
which thus need to be included in models, as well as the types of equations that are used to
model their dynamical behaviour.

Since geophysical processes generally involve the behaviour of large quantities of matter,
a means of accurately modeling macroscopic quantities of materials is required. Since ma-
terials are composed of large numbers of atoms, the most detailed model of a geophysical
system would require tracking the dynamical evolution of each of the atoms in a material.
Not only would such a modeling approach be futile both in terms of specifying an initial
state of the material and in terms of the complexity of the calculations, the solutions to such
a model would be useless. What we want to know is how the materials behave in terms of
macroscopic properties of the material that we can observe.

One way of dealing with macroscopic quantities of materials is to use a statistical ap-
proach, by working with average behaviour of the many atoms that we cannot track indi-
vidually. This is the approach taken by statistical mechanics. But this is not the approach
that is generally used because we have better methods that work by treating macroscopic
materials as if they were purely continuous media. It turns out that it is possible to treat
the behaviour of many macroscopic materials in terms of the evolution of a small number of
measurable parameters that are subject to precise dynamical laws. Thus, we can use param-
eters like veloctiy, density, viscosity, temperature, etc., to model the behaviour materials in
geophysical processes.

Modeling macroscopic materials as continua is possible because of a physical phenomenon
called scale separation, which is where the dynamical processes of a system at one scale are
effectively independent of processes at other scales. It turns out that this is true of most
fluids and solids and under are wide variety of conditions. Thus, we can avoid dealing with
the description of materials in terms of their component atoms and treat them as if they were
pure continua. In fact, in many cases changing the molecular composition entirely does not
affect the macroscopic behaviour of a material. To be sure, the values of physical parame-
ters that characterize a material, like the bulk modulus we will see below, will change with
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a change of material, but the dynamical laws governing the behaviour will stay the same.
It is for this reason that so many macroscopic materials behave as if they were pure continua.

Thus, we see that the most sensible strategy for modeling many geophysical processes in-
volves treating materials as if they were continuous media. Constructing a valid model, then,
i.e., a model that correctly describes the behaviour of a real geophysical process, requires
that we determine the physical laws that govern the dominant behaviour of the materials we
wish to model. The branch of physics that is concerned with the construction, manipulation,
analysis and solution of systems of such physical laws is continum mechanics. Thus, we now
turn to consider the basic approach of continuum mechanics and the manner in which the
behaviour of macroscopic materials is characterized.

2.1 continuum mechanics

The assumption that macroscopic materials can be treated as continuous is called the con-
tinuum hypothesis. We therefore see that the validity of the continuum hypothesis relies
on the scale separation between macroscopic and microscopic behaviour of materials. The
hypothesis involves more than simply this, however. For the hypothesis to be valid, it must
be the case that macroscopic materials continue to behave like continua down to scales much
smaller than the bulk medium. When this happens, it is valid to treat a macroscopic medium
as being composed of tiny, “infinitesimal” material parcels. Since matter is not actually con-
tinuous, the smallest scale at which the medium behaves like a continuum must be much
larger than the atomic scale. Thus, at this intermediate scale, small volumes of material are
hardly infinitesimal in the mathematical sense, since they have a finite volume much greater
than the atomic scale. Nevertheless, the validity of the continuum hypothesis allows the
construction of dynamical equations that capture the dominant behaviour of a real material
by treating material parcels as if they were infinitesimal.

One technical point that is important to recognize is that material parcels do not consist
of the same set of molecules over time. This can be seen simply from the fact that for a
fluid at rest the fluid (material) parcels do not move, but the molcules making up the fluid
are in constant thermal motion and will travel from one “fluid parcel” to another, even for
a stationary fluid. Thus, the velocity of a material parcel cannot be identified with the av-
erage velocity of a particular collection molecules. Rather, it is the average velocity of the
molecules in a given tiny part of the material at a given time, which generally are a different
set of molecules from one moment to the next. We regard, therefore, the material parcels as
tiny parts of the continuous material. In this way, the physical quantities, such as velocity,
density, pressure, temperature, viscosity, etc., that we associate with a medium at a point
come to represent the ideal values of physical quantities that we would measure at a given
point in a medium at a given time.1

With an understanding of the difference between a material parcel and a tiny volume
of molecules in a real material, we can consider how the equations of continuum mechanics
are constructed and what they mean. The basic idea is that the equations governing the
behaviour of the medium are the expressions of conservation laws, such as conservation of

1Whether or not the values provided by the model agree with what we would actually measure depends on
whether or not the model is an accurate representation of the behaviour of the material. This is the question
of the validity of the model, and will be discussed in section 3.4 below.
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mass, energy or momentum, and Newton’s laws of motion applied to infinitesimal material
parcels. Since the quantities of interest (generally) vary continuously over a volume of mate-
rial and over time, constructing the equations we need requires specifying how the properties
of a material parcel change with respect to small changes in space and time. The need to
consider variations in more than one dimension means that the kind of laws that result are
partial differential equations, in the sense that the equations involve partial derivatives of
quantities of interest.

Before we turn to consider the physical motivation for these laws, we must raise an im-
portant issue concerning the choice of coordinates in continuum modeling. First of all, we
will use Cartesian coordinates r = (x, y, z), where r = ∣r∣ is the distance from a chosen origin,
for the location of a point in space and the coordinate t for the time. There are then two
basic ways to describe the motion of a material.

The first way of describing a material’s motion is to track the way that the material is
moving at a particular point in space. In this case, we imagine that we are sitting at a
particular spot and continuously measuring the velocity of the material at that spot over
time. In this case, we describe the velocity of the material in motion as

v(r, t) = v(x, y, z, t).

This is called the Eulerian specification of the motion. It is also called the spatial approach,
since we are working with a fixed space and tracking the motion of the material within that
space. The coordinates r are called Eulerian coordinates of the material motion.

The second way of describing a material’s motion is to track the way that a particular
material parcel is moving over time. In this case, we imagine that we are travelling along
with a material parcel as it moves and continuously measuring its position in space as we go
along with it. In this case, we need a new coordinate p = (px, py, pz) to pick out each parcel.
This may be taken to be the centre of mass of a given parcel at some initial time t0. The
motion of the material is then described as

x(p, t) = x(px, py, pz, t),

where x is the position in space of material parcel p a time t0. This is to say that at t0 we
divide up the material into material parcels and then track the motion of each of them over
time. This is called the Lagrangian specification of the motion. It is also called the material
approach, since we are tracking motion by tracking the location of individual parcels over
time. The coordinates p are called the Lagrangian coordinates of the material motion.

For the purposes of this section we will work with the Eulerian specification, since it is
simpler. But we will see the importance of the Lagrangian specification in section 3.3 when
we consider numerical methods for solving the dynamical equations.

2.1.1 conservation laws

We will now restrict attention to fluid motion, as opposed to the general material we have
been considering up to this point. This reduces generality, but simplifies the treatment, and
is sufficiently detailed for our purposes. We will treat a fluid parcel as a small parallelepiped,
the shape of which may vary as a result of applied forces. In the case of an infinitesimal
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dz

dV

dydx

Figure 2.1: An infinitesimal fluid parcel

parcel, any physical quantity, such as velocity, density, etc., will be considered to be constant
over the parcel over an infinitesimal period of time dt. There can be changes between a given
parcel and an adjacent parcel, but these changes must be infinitesimal.

The simplest equation arises from the formulation of conservation of mass for fluid parcels.
Recall that we are using the Eulerian specification, so that the parcels are fixed in space and
the fluid moves through them. Consider an infinitesimal fluid parcel dV located at r = (x, y, z)
at time t, and let ρ(x, y, z) be the density in the parcel and v(x, y, z, t) = (vx, vy, vz) the ve-
locity in the parcel at t. In the absence of sources or sinks of fluid, the only way that the
amount of mass in the parcel can change is due to flow across the boundary of the parcel.
We can break this down into contributions to the change of mass in V due flow in the x, y
and z directions.

Consider the x direction. The y and z directions will be similar. Suppose that we can
measure the velocity of the fluid on the left and right boundaries along the x-axis. If an
equal amount of fluid leaves one boundary as enters the other, there will be no contribution
to a change in mass of the parcel from flow in the x-direction. Thus, there is only a change
in mass if the velocity of parcels at the two boundaries in the x direction are different. Let
us now consider a step-by-step derivation of the change of mass in the parcel due to flow in
the x-direction.

We will suppose that the near and far boundaries in the x-direction are the same size and
that the velocities of fluid can be different at the two boundaries. Let us first, then, consider
how to calculate the amount of material leaving the far boundary in the x-direction. Suppose
that the velocity at that boundary is vx+ , the x-component of the fluid velocity there. This
means that vx+ is the distance drx+ the fluid travels in the time interval dt divided by the
time interval, i.e.,

vx+ =
drx+

dt
.

Note that if vx+ is positive then fluid is travelling out of the parcel across the far boundary.

Now, the volume of fluid leaving the far boundary is the distance the fluid travels times
the area of the surface it passes though. So, the volume leaving the far boundary is drx+dAx,
where dAx is the area of the boundary in the x-direction. Since ρ is the density (mass/volume)
of the fluid, the mass of fluid leaving the far boundary is dmx+ = ρdrx+dAx+ . By noting that
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dAx

drx+

vx+dt

x̂

ŷ

ẑ

Figure 2.2: An infinitesimal flow of fluid out of an infinitesimal parcel in the x-direction. The volume of fluid
flowing across the far x-boundary is drx+dAx = vx+dAxdt, in which case the mass of fluid flowing across this
bounrday is ρvx+dAxdt.

drx+ =
drx+
dt dt = vx+dt, we therefore obtain

dmx+ = ρ(
drx+

dt
dt)dAx = ρvx+dAxdt.

Similarly, the amount of mass leaving across the near boundary over dt is dmx− = −ρvx−dAxdt,
where the minus sign appears because a negative velocity will result in fluid leaving the parcel.

Thus, the total x-direction contribution to the change of mass dm of the parcel is

dmx = −(dmx+ + dmx−) = −(ρvx+ − ρvx+)dAxdt = −d(ρvx)dAxdt, (2.1)

where d(ρvx) represents the infinitesimal change in the quantity ρvx across the parcel and the
minus sign here appears becuase fluid leaving the parcel, which is what we just calculated,
decreases the mass of the parcel. Therefore, the total contribution to the change in density
dρ from x-direction flow is dmx/dV , where dV = dxdAx is the volume of the parcel, which
from eqaution (2.1) gives us

dρ =
d(ρvx)

dx
dt,

which upon rearranging gives
dρ

dt
= −

d(ρvx)

dx
. (2.2)

Now, the equation (2.2) that we just derived involves ordinary derivatives, i.e., involves
only measures of the total change in some dependent quantity under changes in some indepen-
dent quantity. The dependent quantities here being density ρ and denstiy times velocity ρvx,
and the respective independent quantities being time t and length x. Because in the deriva-
tion of (2.2) we actually considered that part of the changes to mass and density contributed
by changes occuring in the x-direction, holding any changes in the y- and z-directions fixed,
the derivatives in (2.2) are actually partial derivatives, i.e., measures of partial change in a
quantity contributed by changes in one of several dependent quantities while holding those
other quantities fixed. Thus, we must change the notation of (2.2) to reflect this, which yields

∂ρ

∂t
= −

∂(ρvx)

∂x
.
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Now, the argument we developed over the last few paragraphs for the contribution to
density change in the x-direction is exactly similar for the y- and z-directions, so the overall
change in density over the time interval dt is the sum of the contributions from the three
directions, which gives us

∂ρ

∂t
= −(

∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z
) . (2.3)

Using the special notation ∇ = ( ∂∂x ,
∂
∂y ,

∂
∂z ) to denote the spatial differental operator,2 i.e.,

the operator that when applied to a function measures how it changes with small changes in
spatial location, we can write equation (2.3) in the more standard vector notation form

∂ρ

∂t
= −∇ ⋅ (ρv), (2.4)

where the dot ‘⋅’ indicates the vector dot-product. This equation says that the change of
density in time is equal to the negative of the divergence of the density flow, which we may
think of intuitively as the degree to which density is flowing out, of a fluid parcel, hence di-
verging, at a given point. Equation (2.4) is called the continuity equation, since it expresses
the condition that there are no discontinuous changes in mass, i.e., that mass is conserved.
An advantage of writing it in the vector form (2.4) is that, although we derived this equation
in Cartesian coordinates, it is valid using any system of spatial coordinates.

This demonstrates how a partial differential equation arises out of the consideration
of ininitesimal units of flow or change. We will not consider the construction of further
equations in such detail now that the basic ideas have been made clear. We may simply note
that equations for other conservation laws, like conservation of energy and conservation of
momentum can be formulated in a similar way.

2.1.2 dynamical equations

Equations that express conservation laws like (2.4) are called kinematic because they specify
how quantities vary in time prior to any consideration of the forces that are applied and
the nature of a particular material. They are basic constraints that any continuous system
must satisfy. In order to model how a material behaves over time, we need to model both
the forces that are applied to the material and how the material responds to those forces.
The basic relation used for this purpose is Newton’s second law, which is used to express the
conservation of momentum in dynamical phenomena. The equation expressing the law will
be familiar from basic physics as

F =ma,

which says that when a total force F is applied to a body, the acceleration a is in the direction
of the force and is equal in measure to the force divided by the mass m of the body. So, larger
force means larger acceleration and larger mass means smaller acceleration. By considering
infinitesimal parcels of material we can apply this same principle to parcels, which results in
dynamical equations for materials.

2The operator ‘∇’ is typically called ‘del’ but is sometimes also called ‘nabla’.
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To obtain Newton’s second law in a form suitable for continuum mechanics, we may
recognize that it can be expressed in the form3

F =
dp

dt
=
d(mv)

dt
,

where p = mv is the momentum, i.e., the total force is equal to the rate of change of
momentum. Let us apply this principle to an infinitesimal Eulerian fluid parcel. As we saw
above, the infinitesimal mass of a fluid parcel can be expressed as

dm = ρdV.

Now consider some body force F, like gravity, applied to this parcel. Then Newton’s second
law implies that

∂(dmv)

∂t
=
∂(ρv)

∂t
dV = F.

Then replacing the force F on the parcel with fdV , where f is the force per unit volume, then
we have, after cancelling the infinitesimal volume dV on both sides,

∂(ρv)

∂t
= f .

This is just Newton’s second law “per unit volume”, i.e., the change in momentum per unit
volume is the force per unit volume.

This equation is too simple as it is, however, because the total change in momentum
changes not only because of forces applied to the fluid parcel but also because of flow of
material into and out of the fluid parcel. From our construction of the continuity equation,
we know that the change in mass density ρ due to material flow is −∇ ⋅ (ρv). It follows,
then, that the change in momentum density, where momentum is mass times velocity, due
to material flow is −∇ ⋅ (ρv)v, which we can write as −v∇ ⋅ (ρv) to make it clear that the
velocity vector is multiplied by the scalar divergence of the momentum density. Adding this
contribution to the change in momentum density gives us

∂(ρv)

∂t
= −v∇ ⋅ (ρv) + f . (2.5)

We still have one other basic contribution to consider. We have included the body forces
applied to the parcel, but we have not considered the contact forces applied by nearby parcels.

The basic contact force is the pressure p(x, y, z, t) exerted by nearby parcels.4 An ac-
celeration due to pressure in the x direction will occur if there is an unbalanced pressure
force in the x direction, i.e., if the pressure changes from one side of the parcel to the other.
From similar considerations as we used above, we find that the infinitesimal change in pres-
sure force across the parcel in the x direction is (dp)xdAx, where (dp)x is the infinitesimal

3The meaning of the symbol p, which here represents momenum, is not to be confused with the meaning
intended above, where it was used within the Lagrangian specification to refer to the coordinates of a fluid
parcel at some reference or initial time t0.

4We do not need to explicitly represent the direction of the isotropic pressure force since it is always
directed inward on the boundary of a volume. Thus, we do not represent simple isotropic pressure as a vector
field.
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change in pressure across the parcel in the x direction. When we divide this by the volume
dV = dxdAx of the parcel, we see that our contribution to the force density is

−
(dp)x
dx

,

where the minus sign appears because an increase in pressure in the positive x direction
results in a force in the opposite direction. Recognizing that restriction to changes in the x
direction makes this a partial derivative, we obtain

−
∂p

∂x
.

Adding the force density contributions from the three directions, taking account of the fact
that the three forces are directed along the coordinate axes, the force density contribution
from pressure is

−∇p = −(
∂p

∂x
,
∂p

∂x
,
∂p

∂x
) .

This indicates that the force density due to pressure is the negative of the gradient of the
pressure, which is the spatial rate of change of the pressure, i.e., a directional measure of
how the pressure changes as we change position at a particular time. Addiing this to the
right hand side of equation (2.5) and rearranging gives the equation of motion

∂(ρv)

∂t
+ v∇ ⋅ (ρv) = −∇p + f . (2.6)

This is essentially Euler’s equation for fluid flow.

There is one other important force contribution in the case of fluids—viscosity. Viscosity
results from the friction between nearby parcels. Thinking in terms of parallelepiped parcels
as we have been, in any given direction (x, y or z) there are two independent frictional forces
between surfaces since a surface of one parcel and slide over another in two different directions
(see figure 2.3 for a depiction of the shear stress forces that result in viscous friction). Thus,
for adjacent surfaces in the x direction, we can break down the frictional force into a y-
component and a z-component of the frictional force. The amount of friction depends on
how fast parcel surfaces are moving relative to one another. Thus, for surfaces in the x
direction, the frictional forces are proportional to how fast the the fluid velocity v changes
in the y and z directions, i.e., on

∂v

∂y
and

∂v

∂z
.

A simple model of the resulting viscous stresses, is thus

τxy = µ
∂v

∂y
ŷ and τxz = µ

∂v

∂z
ẑ,

where µ is a constant parameter called the dynamical viscosity that measures the amount of
friction between surfaces and ŷ and ẑ are unit vectors in the y and z directions indicating the
direction of the forces. Since the net force on a fluid parcel is exerted by the change in stress
across a fluid parcel, the total force per unit volume in the x direction from stress applied to
the x-surface is

−
∂p

∂x
+ µ

∂2v

∂y2
+ +µ

∂2v

∂z2
.
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σxx

σxy

σxz

x̂

ŷ

ẑ

Figure 2.3: A depiction of the three principal stresses on the surface of an infinitesimal fluid parcel in the the
x-direction. The stress σxx that points in the x-direction is a compression/expansion force. The other two
stresses, σxy and σxz, which point in the y- and z-directions but are applied to the x-surface, are shear forces,
which can result in viscous friction between parcels, or strain deformation or rotation of the fluid parcel. The
three principal stresses in the y- and z-directions are similar.

Fluids for which this simple viscosity model is valid are called Newtonian fluids.

Rather than consider viscosity in more detail, it will suit our purposes better to consider
a more general case for materials that need not be fluids. We consider the case where for
any given surface of an infinitesimal material parcel there can be forces in three independent
directions: shear forces that are parallel to the surface; and tension or compression forces
that are perpendicular to the surface. Thus, viscosity is an example of a shear force and
pressure is an example of a compression force. This gives rise to a stress tensor σ, which has
components σij corresponding to the stress in the direction ĵ on a surface in the direction î,
where i, j ∈ {x, y, z} (see figure 2.3 for a depiction of the stresses σxj acting on the x-surface
of a fluid parcel; the stresses σxyj and σzj on the y- and z-surfaces, respectively are defined
similarly). This allows us to regard the stress tensor as a 3 × 3 matrix, where the diagonal
terms are tension-compression stresses and the off-diagonal terms are shear stresses.

Now, folllowing a similar argument to that used to derive the continuity equation, we find
that the contribution of a given component of the stress tensor to the change in momentum
density is equal to the rate of change of stress in the direction the force acts. Consider the
x direction. Then, the tension-compression force density is ∂σxx

∂x , much as before except that
the diagonal component σxx of the stress tensor takes the place of the pressure. The other
components to stress in the x direction arise from shear forces on surfaces in the y and z
directions. Similarly, the resulting force densities are

∂σyx
∂y and ∂σzx

∂z , since accelerations will
result if the shear forces are different on opposite sides of the material parcel. Thus, the
total x direction contribution to the force density becomes

∇ ⋅σx =
∂σxx
∂x

+
∂σyx

∂y
+
∂σzx
∂z

,

where σx = (σxx, σxy, σxz)
T is the first column of the stress tensor matrix. Therefore, the

Euler equation of motion gets replaced by the Navier-Stokes equation

∂(ρv)

∂t
+ v∇ ⋅ (ρv) = ∇ ⋅σ + f , (2.7)



Hydrocodes for Impact Cratering Modeling 13

where the “tensor divergence-gradient” ∇ ⋅σ = (∇ ⋅σx,∇ ⋅σy,∇ ⋅σz) (indicated by the bold
del operator) is convenient notation.

Now, if we shift to a Lagrangian material parcel that can be stretched or compressed by
stresses, then we can differentiate between three basic forms of stress, viz., those that change
volume, those that change shape, and those that rotate. To do this we first separate the
stress tensor into two parts,

σ = s + pI,

where p is an isotropic, scalar pressure, responsible for changes in volume, with I the identity
matrix, and s is the deviatoric stress tensor, which represents forces that change the shape
or rotate material parcels (but preserve volume). Now, the deviatoric stress tensor can also
be separated into two parts,

s = ss + sa,

one symmetric and the other antisymmetric.

Let us consider the symmetric case, the antisymmetric case should then be clear. For the
symmetric part of the deviatoric stress, the components satisfy the condition

sij = sji,

which is just what it means to be symmetric. What this means geometrically is illustrated in
figure ??, which shows the meaning of the condition sxz = szx where both are positive. This
corresponds to a strain that deforms the fluid particle by collapsing the x-face and z-face
into one another. If both stresses are negative, the vectors shown in figure ?? point in the
opposite direction and the strain deforms the particle by pulling the faces apart. Generaliz-
ing this to sxy and syz as well, this shows that the symmetric part of the deviatoric stress
tensor specifies the forces that cause deformation of fluid parcels. And this only requires the
specification of three principal stresses, e.g., sxy, sxz, and syz. Once this symmetric case is
understood, the antisymmetric case, where sij = −sji, is easily understood to specify stresses
that rotate fluid particles, which is necessary to model vorticity (see Tritton, 1988, 81, for a
definition and discussion of vorticity).

Since vorticity is significant only in fluid motion and we are primarly interested in con-
tinuous and fractured solids, we will assume that the deviatoric stress tensor s is symmetric.
In this case, the Navier-Stokes equations reduce to the form5

∂(ρv)

∂t
+ v∇ ⋅ (ρv) = −∇p +∇ ⋅ s + f , (2.8)

which clarifies the manner in which the Navier-Stokes equations are a generalization of the
Euler equations.

Although this equation might appear intimidating, it is important to recognize the physi-
cal meaning that the equation clearly expresses given our understanding of the physical origin
of each term. Each term in the equation represents either a rate of change in momentum
density or a force density. The two terms on the left hand side represent, respectively, the

5Note that the vector divergence ∇ ⋅ pI reduces to the gradient of p since, e.g., the x component satisfies
∇ ⋅ (pI)x = ∂p

∂x
, where (pI)x is the first column of the diagonal matrix pI = diag(p, p, p).
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Figure 2.4: A depiction of the condition that the deviatoric stress tensor by symmetric for the sxz and szx
terms. The condition implies that the stresses act contrary to one another, leading to deformation of the
fluid parcel. The case where sxz is positive is shown, leading to collapse of the x- and z-surfaces into one
another. For negative sxz the vectors point in opposite directions, resulting in opening of the surfaces. In the
antisymmetric case, the stresses act in conjunction with each other, leading to rotation of the fluid particle
about the y-axis (counterclockwise for positive sxz, clockwise for negative sxz).

overall rate of change in momentum density and the change in momentum density specif-
ically as a result of fluid motion. The three terms on the right hand side then represent,
respectively, contact forces that change the volume, contact forces that change the shape,
and external body forces. In this way, the Navier-Stokes equations are simply the expression
of Newton’s second law of motion for a continuous material.

Now that we have defined the deviatoric stress tensor, we can express another important
conservation law, that of conservation of energy. In this case, the quantity that we are in-
terested in tracking changes in is the internal energy density U of a material parcel. Since
the internal energy can change for a number of reasons, including the flow of material in and

out of the parcel, we obtain a term
∂(ρU)
∂t + v ⋅ ∇(ρU) on the left hand side similar to that

of (2.8), with the notational shift reflecting that we are tracking the motion of a scalar field
(energy) rather than a vector field (velocity) in the case of (2.8).

The other sources of change in internal energy result from the heat generated by the
stresses modeled by σ. We can divide this into volume work done by the pressure and dissi-
pation of heat due to viscous (frictional) stresses. Suppose that we require the parcel to have
a fixed mass, then what we previously considered to be flow of material across the boundary
equates to a change in volume of the parcel in order to keep the mass constant. Thus, the
divergence ∇ ⋅ v is a measure of the change in volume due to pressure forces (positive diver-
gence means outward flow or decrease in volume). Since the volume work is given by −pdV ,
the contribution to change in internal energy from heat generated by pressure forces is −p∇⋅v.

The strain due to deformation of the material parcel is measured by a dimensionless
tensor quantity ε. The component εij is the percentage change in the shape of a surface
of a material parcel in comparison to an undeformed parcel. Given that in our model the
deformation is caused by the deviatoric stress, changes in the component εij of the state of
deformation, are the result of the sij component of the deviatoric stress. The infinitesimal
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amount of energy stored or released during an infinitesimal period of time is therefore the
product of the stress and the time rate of change of the strain, i.e., sij ε̇ij . This rate of
change of the strain is called the deviatoric strain rate. Thus, we may write the conservation
of energy equation as

∂(ρU)

∂t
+ v∇ ⋅ (ρU) = −p∇ ⋅ v + s ⋅ ε + h, (2.9)

where h represents sources or sinks of heat and the “tensor dot product” (indicated by the
bold dot) of s and ε is understood as the sum of the products of corresponding components
of the two tensors, i.e., the sum of all the terms sijεij .

Once again, we end up with an intimidating looking equation. But, once again, the im-
portant thing to recognize is the physical meaning that the equation clearly expresses, given
that we now understand the physical origin of each term. The two terms on the left hand
side represent, respectively, the overall change in energy density and the change in energy
density specifically as a result of fluid motion. The three terms on the right hand side then
represent, respectively, the heat from the work done by the pressure to change the volume,
the heat from the work done by the change in strain (deformation) effected by volume pre-
serving stresses and external sources or sinks of heat.

Finally, before we continue, we may note that the same kind of derivatives appear on the
left hand sides of equations (2.8) and (2.9) are the same. The common differential operator is
often called the material derivative and is abbreviated D

Dt . In this notation, then, our three
partial differential equations for the dynamics of the material are:6

∂ρ

∂t
= −∇ ⋅ (ρv); (2.10)

D(ρU)

Dt
= −p∇ ⋅ v + s ⋅ ε + h. (2.11)

D(ρv)

Dt
= −∇p +∇ ⋅ s + f . (2.12)

2.1.3 constitutive equations and the material model

The three equations (2.10), (2.12) and (2.11) constitute the specification of a (fairly) general
theory of the behaviour of continuous materials in motion. Perhaps despite appearances,
however, these equations on their own do not describe the behaviour of any physical system.
Indeed, they are compatible with very different sorts of behaviour under nominally the same
conditions, ceteris paribus. This is because these equations are too abstract—to get definite
behaviour we need to supply information about the properties of the kind of material that
we are modeling. Such information will tell us how the quantities of pressure, density, en-
ergy, stress and strain are related to each other. Since the relations between these quantities
are, in general, different for different materials, the relations characterize the behavioural
characteristics of a kind of material. The equations that specify these relations are called
constitutive equations. These equations are often determined from empirical models based
on measurements of the behaviour of real materials.

Since the unknown variables we have are ρ, v, U , p, s and ε, and we have only three
equations in these six unknowns we require three additional equations to define definite be-

6This list of equations is not exhaustive. A more complete list is provided by (Zukas, 2004, 107, ff.).
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haviour. These equations we need are of two basic types.

The first of these are thermodynamic equations that relates the pressure, density and
either the internal energy or the temperature, which can be interconverted. These equations
are called equations of state because they specify the state of a given quantity given the
states of the other quantities related by the equation. The most common equation of state
in continuum mechanics, so common that it is often not stated explicitly, is

ρ = constant.

This approximation simplifies the equations of motion of the last section considerably because
∂ρ
∂t = 0 and ρ can be taken outside of a derivative operator. This together with the continuity
equation implies that the material is incompressible, i.e., has zero divergence. This is often a
good approximation for fluids since they are known to change their density even with quite
large changes in pressure (Tritton, 1988, 65). When this approximation is not valid, however,
an equation of state of the form

ρ(p,U) = fρ(p,U),

for some function fρ of the pressure and internal energy, must be specified. We may call this
equation the density model. In any case, we also require a second equation of state to relate
the three quantities. Since the internal energy is usually computed directly in most impact
models (Osinski and Pierazzo, 2012, 256), the second equation of state required is typically
of the form

p(ρ,U) = fp(ρ,U).

We may call this equation of state the pressure model.7

The equations of state determine thermodynamic properties of a material such as thermal
expansion/compression, heat capacity, wave speeds, etc. Importantly, however, equations of
state may also describe phase changes of a material where discontinuities in thermodynamic
properties occur. Examples of phase changes are the familiar solid-liquid, liquid-gas and
solid-gas transitions, but also include solid-solid transitions. Figure 2.5 shows a well-known
equation of state for water, including the variety of distinct solid phases of ice, as a function
of temperature, specific volume, and pressure. Since impacts produce melt rock as a result
of the thermal energy released in a collision, considering phase changes is very important
for accurate modeling. Phase transitions are also involved in more detailed effects like shock
metamorphism, so careful choice and handling of phase transitions is an important part
of constructing valid models of impact phenomena. An example of a pressure-temperature
equation of state for several types of rock at the pressure scales and temperatures seen in
impact phenomena is shown in figure 2.6.

The second type of equation we need to make the theory descriptive relates the deviatoric
stress to the strain and strain rate, as well as the pressure and temperature or internal energy.
Whereas the equations of state specify the response of the material to volume changes, these
equations relating stress and strain specify the behaviour of the material to shape changes.

7Note that in general the density model and pressure model may be specified implicitly as Fρ(ρ, p,U) = 0
and Fp(p, ρ,U) = 0, respectively. In such a case the density and pressure may not be single-valued as a function
of the other variables. An instance where this situation occurs is in the phenomenon of hysteresis. In such a
case the value of the density or pressure is path-dependent.
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Figure 2.5: Graphical representation of the temperature-specific-volume-pressure equation of state for ice.

Figure 2.6: Graphical representation of the pressure-temperature equation of state for different types of rock
under conditions of shock pressures and temperatures seen in an impact event.
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These equations are called the deviatoric stress-strain model.8 It is defined by an equation
of the form

s = fs(ε, ε̇, p,U),

where s depends component-wise on ε and ε̇, i.e., a given component of the stress tensor
depends only on the corresponding components of the strain and strain rate tensors.

The simplest such equation is simply

s = 0,

i.e., the material does not support any strain (deformation) in response to stress. This is
called the hydrodynamic approximation, since the only contact force affecting the motion is
the hydrostatic force from the pressure gradient. Although this is strictly false of any real
material, it can be a valid approximation at very high pressures, where the contribution
to the total force density from the pressure gradient overwhelms the contribution from the
deviatoric stress. Accordingly, the hydrodynamic approximation is valid during the early
stages of the impact process where the pressures are very large. For this reason the earliest
numerical impact models ignored the strength of materials and adopted the hydrodynamic
approximation, which is why they came to be called ‘hydrocodes’ (Osinski and Pierazzo,
2012, 265).

Just as viscosity must be taken into account for general fluid motion, the strength of ma-
terials must be taken into account for general solid motion. For solids, not only can there be
viscous dissipation of heat, there can also be energy stored in the strain that a material can
tolerate from applied stress. Up to a given point the strain is elastic, i.e., the removal of the
stress causes the energy to be released and the material returns to its prior unstrained state.
This point is called the elastic limit. Beyond this limit the material becomes permanently
deformed and the deformation is said to be plastic rather than elastic. This is a familiar
phenomenon to any one who has stretched a string too much. The amount of strain that a
material can support before a plastic defomation occurs is called the yield strength. There
are two main ways that plastic deformation can occur depending on the type of material
and its physical state. In ductile flow, the strain is uniformly distributed and the material
permanently changes shape without breaking. In brittle fracturing or breaking, the strain is
localized. In such a case a model of the resulting discontinuity, called a failure model, is re-
quired to represent the effects of breaking. Since the formation of shatter cones from impact
shock waves are conical fractures in the country rock, modeling their formation requires this
type of modeling.

There are two important general properties of the strength of rock to note here. The first
is that the strength increases with increasing pressure as a result of the granular structure
of rock. Increasing pressure presses the granules closer together, which makes it harder for
granules to move over one another, thereby increasing the strength of the rock. The sec-
ond is that the strength of rock decreases with increasing temperature. As the temperature

8Although both the equations of state and the deviatoric stress-strain model are constitutive equations,
equations specifying the behaviour of specific classes of materials, the stress-strain model is sometimes referred
to as the constitutive model or strength model of the material (cf., Osinski and Pierazzo, 2012, 256). Note
that Osinski and Pierazzo (2012) call the stress-strain equations the deviatoric stress model, I include the
‘-strain’ to make clear that the model specifies how applied stress and the resulting strain in the material are
related.
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approaches the melting point of the rock, the ability of the rock to store energy as strain
vanishes. As a result, the deviatoric stress term in the Navier-Stokes equations (2.12) reduces
to a viscous term and the deviatoric contribution to the change in energy in equation (2.11)
reduces to viscous dissipation. For more details on the strength of materials in the context
of hydrocode modeling of impacts, including the effects of porosity, fractured materials, and
sample size, see (Osinski and Pierazzo, 2012, 265-7) and the references included therein.

The equations of state together with the deviatoric stress model constitute the material
model, which may be summarized as:

ρ = fρ(p,U); (2.13)

p = fp(ρ,U); (2.14)

s = fs(ε, ε̇, p,U). (2.15)

We will refer to the overall dynamical model specified by the six equations (2.10-2.15) as the
dynamical material model.

2.1.4 boundary conditions

One final note before we turn to the consideration of numerical methods concerns the solu-
tions of the dynamical equations together with the material model. Although these equations
together describes definite physical behaviour, these equations are compatible with a wide
variety of specific behaviour depending on the physical conditions that the material is subject
to. The additional conditions are boundary conditions.

In the case of impact modeling, the boundaries that must be specified are the spatial
boundaries of the different materials being modeled. In cases where we are dealing with
interfaces between two large samples of different material, the boundary conditions simply
specify the velocity and thermodynamic conditions that obtain at boundaries. In the case
of porous or mixed materials, however, this becomes enormously more complicated. Strictly
speaking, similar velocity and thermodynamic conditions must be specified wherever a bound-
ary between different materials exists. For porous and mixed materials, these boundaries can
exist throughout the bulk material and at very small scales. One type of approach determines
the effective thermodynamic behaviour of the mixture of materials. Another, more accurate,
approach resolves the material mixture in detail and the proper velocity and thermodynamic
boundary conditions are applied. This more accurate approach can be pursued algebraically
by multiscale methodsm which use special averaging and homogenization techniques to ac-
curately determine the effective macroscopic behaviour from the known behaviour at smaller
scales (see Pavliotis and Stuart, 2008). The more accurate approach to modeling mixed
materials can also be pursued numerically by resolving the mixed material in detail and
computing the effects of material boundaries. For more details on this case see (Osinski and
Pierazzo, 2012, 264-5) and the references included therein.

There is also an important boundary in time since the state of the material system must
be specified at some initial time t0. This involves the specification of the initial values of
the spatial configuration, velocity, density, pressure, internal energy, stress, strain and strain
rate. When these initial conditions are applied together with appropriate spatial boundary
condtions, the dynamical model of the material system will determine definite behaviour, at
least locally to some range of the values of the physical quantities.



3 Numerical Modeling of Continua

The availability of cheap computing devices with fast processing and large amounts of fast
memory makes the direct numerical solution of the equations of a model possible for increas-
ingly many continuum mechanics models. The reliance on numerical solutions rather than
algebraic solutions, however, brings with it new challenges and difficulties. Solving equations
numerically introduces new sources of error that must be carefully accounted for to ensure
that the results of a computation are reliable. In this section we will see that how concerns
about reliability can be handled and how in some cases we can regard a numerical solution as
an exact solution to a nearby material model using the techniques of backward error analysis.

3.1 convergence, stability and conditioning

The two basic conditions for any numerical algorithm to be reliable are convergence, which
ensures that increasing the precision of the calculation converges on the exact solution, and
numerical stability, which ensures that the error in the computed solution is “small” in a rel-
evant sense. Before considering specific methods of solution of partial differential equations
in the next section, we will here consider these two concepts in general terms.

There are two basic kinds of error in an numerical computation of the solution to a
mathematical problem: forward error; and backward error. It will be helpful to explain these
concepts in terms of a simple example. Consider the problem where we are to solve the
equation

x2
− 2 = 0 (3.16)

using some numerical algorithm. In this case we know the exact solution is x =
√

2. Suppose
that we use a computer to find an approximate solution and the result is x̂ = 1.4142. Then
the forward error is the difference x− x̂ between the exact solution x to equation (3.16) and
the computed solution x̂. In this case the forward error is approximately 1.36 ⋅10−5, or 0.001%
of the exact solution, a quite accurate result by many measures.

In this example we are able to calculate the forward error directly because we know the
exact solution. In general, we do not know the exact solution and have no way of finding
it. Indeed, for differential equtions, not being able to find the exact solution is the generic
case. There is another kind of error, however, that can be computed or estimated and used
to judge the quality of a numerical solution. This is called the backward error, which is the
smallest change we can make to the data defining the problem so that the computed solution
is the exact solution to a modified problem.

Let us explain this using the same example as before. If we substitute our computed

20
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solution x̂ = 1.4142 to equation (3.16) back into the equation we find the result that

x̂2
− 2 = −3.83 ⋅ 10−5, (3.17)

which can be rearranged to give

x̂2
− 1.99996164 = 0. (3.18)

This shows that we have computed the square root of a number very close to 2. You will
notice, though, that our computed approximate solution to (3.16) is the exact solution of the
modified equation (3.18). Thus, we see that at the expense of a slight modification of the
problem, we have found an exact solution—not an approximate one.

The quantity on the right hand side of equation (3.17) is called the residual. It is the
amount by which the computed solution fails to satisfy the original problem (3.16). Since
this is the smallest change to the data of the problem that makes the computed solution
the exact solution of a modified problem, we see that the residual is in fact the backward
error in this case. Thus, we see how the backward error can be computed by substituting
the computed solution back into the original problem. It is not always possible to compute
the backward error this way (see Corless and Fillion, 2013), but it is possible to do so for
differential equation problems, which is the case we are concerned with.

There is a significant epistemic benefit from showing that the backward error is small
when computing solutions to modeling problems, as we are for material models. By com-
puting the backward error and showing that it is small, we can show that our computed
solution is the exact solution to a material model that is only a small modification of our
original model. But since error is introduced in measurement of parameters, construction
of constitutive equations and in the construction of the theoretical equations of motion, the
material model we are solving numerically is only an abstract approximation of the real ma-
terial. Thus, provided that numerical error does not introduce non-physical perturbations
into the problem, a small backward error shows that the numerical solution is the solution of
just as valid a model as the original one. Stated simply, a small backward error means that if
the original model was an accurate portrayal of the physics, then so is the numerical solution.

Due to the computational complexity of partial differential equation problems, particu-
larly in three spatial dimensions, as is required in impact simulation, computing the backward
error is not always feasible. When it is possible and it is small, however, it shows that we
computed an exact solution to nearby material model. So if our original model is valid, so is
the nearby model we solved exactly.

With the two types of numerical error made clear, we can now explain the concepts of
convergence and stability in generic terms. In differential equation problems, as in most con-
tinuous mathematical problems, numerical solution involves replacing continuous quantities
with a discrete mesh. With such a discretization, it can be coarse, using only few points,
or fine, using many points. The parameter h is often used to represent the largest distance
between mesh points. Thus, a mesh becomes increasingly fine the smaller h becomes. The
basic idea of a convergent numerical method, then, is that as we make the discretization finer
and finer the forward error goes to zero. In this way, the numerical solution converges on the
exact solution as the mesh size goes to zero (h→ 0).
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Convergence is a necessary condition for a good numerical method but not a sufficient
one. It must also be the case that the numerical method produces a small error in actual
computations. This is what the concept of numerical stability pertains to. An algorithm
is backward stable if it produces a small backward error for any data. This is the basic re-
quirement of stability for a numerical algorithm, and is a natural requirement for modeling
problems, as was indicated above.

In modeling problems we often require not only a model that gives behaviour similar to
the target system but also that it accurately tracks the target system’s behaviour. In this
case, we also require a small forward error. Determining this on the basis of a backward
stable numerical method applied to a problem requires that the problem is well behaved in
the following sense. For a small backward error to indicate also a small forward error, it must
be the case that small perturbations or changes to the problem do not cause large changes in
the solution. This behaviour of the problem is referred to as the conditioning of the problem.

If a small change to the problem or model leads to only small changes to the solution,
then the problem or model is said to be well-conditioned. If, on the other hand, a small
change to the problem or model leads to large changes in the solution, then the problem or
model is said to be ill-conditioned. The conditioning of a problem or model is often measured
by a constact called the condition number C. A small condition number indicates a well-
conditioned problem, and a large condition number indicates an ill-conditioned problem. The
condition number satisfies a relation of the form

forward error ≲ C ⋅ backward error,

which shows that if the backward error is small and the condition number is small, then
the forward error is also small. In this way, then, a backward stable algorithm applied to
well-conditioned problem results in a small forward error.

A non-linearity in an equation is generally a source of ill-conditioning of a problem. Since
the equations of continuum mechanics are generally non-linear, in the sense that they involve
products of the solution and its derivatives, this is a significant concern for impact modeling.
Just because a problem is ill-conditioned does not, however, mean that numerical solutions
are useless. It does mean that care must be used when interpreting the numerical solution.
Consideration of this in detail is beyond our scope, but you may see (Moir, 2013, 2010) or
(Corless, 1994b) for more details on this issue in the context of chaotic ordinary differential
equations.

3.2 numerical methods for partial differential equations

We now turn to the consideration of different methods of discretizing the differential equations
of a dynamical material model. We will focus on mesh-based methods and consider mesh-free
methods only briefly. Discretizing partial differential equations using a mesh involves using
one method or another to divide a continuous space into finite cells and then solving a discrete
version of the equations in terms of these cells, rather than over the entire continuous domain.

Although numerical methods are typically looked at as tools for getting meaningful ap-
proximate solutions out of a set of model equations after the modeling process has been
completed. There are many technical reasons to consider the use of numerical methods as
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a continuation of the modeling process. Considering these reasons are beyond our scope,
but we may mention that an interpretation of numerical error as backward error provides
one of these reasons. This is beacause backward error can be interpreted as a perturbation
of the model equations, and therefore on a par with other perturbations from measurement
and modeling errors. In particular, demonstrating a small backward error can usually show
that the perturbation introduced by the numerics is smaller than the other sources of error
in model equations, therefore showing that the perturbation effected by the numerical com-
putation is less significant than other sources of error in the modeling. For more details on
this interpretation of backward error, see (Moir, 2010, 2013; Corless, 1994b).

There is another more heuristic reason to regard numerical methods as part of the model-
ing process in the case of partial differential equations, which will be useful for our purposes.
This has to do with the continuum hypothesis mentioned in the previous section. The con-
tinuum hypothesis requires only that a material behave like a continuum down to a scale
much smaller than the size of the macroscopic material, not down to infinitesimal scales as
is assumed in the construction of the model equations. This is because real materials are
not actually continua. From the point of view of the continuum mechanics, the finite parcels
of material at small scales become a rough approximation of the infinitesimal fluid parcels
used to construct the equations of motion. But since real materials only behave like continua
for fluid parcels of some small finite size, from a point of view of describing real physical
behaviour, the discretization be regarded as modeling this fact.

It must be noted that this is not a technical argument. It is merely to point out that
the discretization can resemble in certain respects a more accurate model of real materials
than pure contiuua. For the resemblance to be strong it must be the case that the resolution
of the mesh is small enough that the cells can reasonably be regarded directly as models of
average behaviour over a certain volume. In such a case, and even in general for heuristic
purposes, the quantities computed by the numerical method can be regarded as modeling
direct measurements of material properies of small volumes of material. In this way, then,
numerical models can be regarded in a significant sense as models of actual experiments and
measurements of material behaviour. Indeed, numerical models are sometimes referred to as
“experiments” in the continuum mechanics literature, since they play a similar role to that
of physical experiments (Tritton, 1988, 428ff.).

Now let us turn to consider some of the details of how different approaches to solving the
dynamical model equations numerically.

3.2.1 finite difference methods

The approach of finite difference methods is to discretize the dynamical material model by
replacing derivatives, which involve infinitesimal differences, with finite differences between
the solution evaluated at different points. This replaces differential equations that we cannot
solve with difference equations that we can.

To illustrate what is involved in doing this, consider the Navier-Stokes equation (2.7) in
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one spatial dimension with the pressure constant and with no stress or body forces, viz.,9

∂v

∂t
+ v

∂v

∂x
= 0. (3.19)

In this case, the solution we are looking for is v(x, t). Thus, the solution can be regarded as
a surface in the two dimensional xt-plane, but it can also be regarded as a spatial curve that
changes over time. The finite difference approach discretizes the two dimensional domain by
replacing it with a finite set of values of x and t. The simplest way to do this is to make
all the x values and t values equidistant. These values define the nodes of a square mesh,
in the sense that the nodes are the crossing points of vertical and horizontal lines through
the nodes, the lines forming a mesh in a quite literal sense. The selection of nodes for the
spatial part of a material model breaks up the domain or material into cells or elements (see
figure 3.7). In the case of finite elements, which we consider here, the spatial units are called
cells, and in the case of finite elements, which we consider in the subsequent subsection, the
spatial units are called elements.10

As a simple example, then, replacing equation (3.19) with a simple forward difference
scheme results in

v(xi, ti+1) − v(xi, ti)

ti+1 − ti
+ v(xi, ti)

v(xi+1, ti) − v(xi, ti)

xi+1 − xi
= 0.

Using h = ti+1 − ti to denote the size of a time-step, and assuming that the spatial mesh has
the same size h = xi+1 − xi, to give a square mesh, this can be rearranged to give a formula
that can predict the value of the solution at the next time ti+1 based on information available
at the current time ti:

11

v(xi, ti+1) = v(xi, ti)(1 + v(xi, ti) − v(xi+1, ti)).

Assuming that all the xi are known at the current time, this provides a way of marching the
solution forward in time.

As was mentioned in the previous section, the accuracy improves the finer the mesh.
In the case of a square mesh, as we have in our example, the x nodes and t nodes are all
equidistant. The smaller we make the mesh size h, the more accurate the solution to the
difference equations will be, in the sense of small forward error. The simplest approaches to
replacing derivatives with differences are the forward and backward difference methods. The
forward approach takes differences between the current and next time or place, the backward
between the current and previous. These methods have the property that reducing h by 1

2 ,
which doubles the number of nodes for both x and t, the forward error also decreases by 1

2 .
Thus, they converge on the correct solution as h goes to zero, but they do so at a linear rate.

Typically it is advantageous to have faster convergence, which is accomplished by the
central difference method, which evaluates the solution at three points instead of two. This

9This special case of the Navier-Stokes equations is called Burgers’ Equation.
10In the case of finite difference codes, the entire space-time domain is divided into cells. Whereas for finite

element codes, at least for hydrocodes, it is common to divide only the space domain into elements and to
treat time evolution using finite differences.

11Note that it is not to be assumed that such a formula will give accurate results. There is a good deal
more than this to ensuring that a finite difference scheme is both convergent and numerically stable. This
does, however, give the basic idea of what a finite difference scheme does for this type of equation.
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Figure 3.7: A depiction of the node labeling for a three dimensional spatial mesh. This defines a cell in the case
of finite difference, usually Eulerian, codes and an element in the case of finite element, usually Lagrangian,
codes.
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approach has the property that when h is decreased by 1
2 , the forward error is reduced by 1

4 .
Thus, the convergence is quadratic rather than linear. This is usually represented by saying
that the convergence is O(h2), read “order h squared”. In this notation, the forward and
backward difference methods are O(h). For this reason forward and backward differences
are called first-order methods and central differences is a second-order method. Third and
higher-order methods are also possible. Higher order methods have the advantage that the
forward error decreases much faster as you decrease h, but the computational cost in terms
of processing, time and memory allocation becomes larger the higher the order. Thus, there
is a trade off between the complexity, time and energy requirements of the computation on
the one hand and the accuracy on the other.

The simple case we have considered of a regular grid is a quite special case. It is common
to divide up the domain in an irregular way so that fewer nodes are used where the solution
is varying slowly and more nodes are used where the solution is varying quickly. Since fast
varying solutions can represent a source of ill-conditioning, an attempt is made to increase
the accuracy in regions of rapid change to compensate. It is also advantageous to use fewer
nodes in areas where the solution is varying slowly because this speeds up the computing
time. Without prior knowledge of how the solution behaves there is no general method to
predict where instabilities will occur. For this reason an initial low accuracy method can be
used to make such predictions, so that a finer irregular mesh can be devised to generate an
optimal mesh. This gets into the matter of mesh adaptation, which we will describe below.

advantages and disadvantages

The primary advantage of finite difference methods is their simplicity, both in conceptual
terms and in terms of ease of implementation. The manner in which one discretizes the
domain is reasonably straightforward in the sense that it simply requires selection of a set
of nodes, and the finite difference schemes often give rise to a discrete problem that is fairly
simple to solve. In technical terms, they give rise to sparse linear systems, for which there
are very fast solution techniques (see, e.g., Gerald and Wheatley, 1994, chapter 7).

One of the main disadvantages, however, is that these advantages generally require rectan-
gular domains or domains that have high symmetry. It is very difficult to deal with irregular
domains using finite differences. Having an irregular boundary means that the approach to
discretization has to be changed near the boundary, which often makes it difficult to ensure
accuracy of the same order as on the rest of the domain. It can also be difficult to locate
nodes on the actual boundary (this occurs if the boundary is defined by an equation you need
to solve), causing problems with applying the boundary conditions. Because finite element
methods do not have the same difficulties, it is for these reasons, and other allied reasons,
that finite elements are commonly used for irregular regions.

3.2.2 finite element methods

The approach of finite element methods is to discretize the dynamical material model by
dividing up the material into finite sized pieces, the finite elements, and to then find an ap-
proximate solution over each element in such a way that the solution is continuous between
elements. Intuitively, then, by stitching together the solution over each element we obtain a
solution for the entire material.
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There are a large number of variants of the finite element method, which vary in terms of
how the material is discretized, how the solution is represented over each element and how
the solution over each element is calculated. We will barely scratch the surface of this variety
in the consideration in outline of what the method involves.

One approach to finite elements, which we will consider, treats time and space differently
in the following sense. The material is divided into discrete parts using finite elements, but
changes in time are treated with finite differences. Thus, the intuitive picture we should have
is that for each instant in time we solve the equations for the material in terms of finite ele-
ments, then we step forward in time and solve the equations for the new state of the material
in terms of finite elements. Thus, we can ignore changes in time for our purposes and simply
consider how the equations are solved for a state of the material.

The first step is to divide the material into finitely many pieces. In one dimension
this amounts to dividing a line into finite length pieces. Since impact modeling generally re-
quires two or three dimensional material models, we will not consider this case explicitly even
though it is the simplest. In two dimensions the material is usually divided up into triangular
elements and in three dimensions pyramid shaped elements. We will restrict attention to the
two dimensional case, the three dimensional case is similar. The division into elements, then,
is accomplished by selecting three nodes, points on the material, to define each element, in
such a way that all the triangular elements fit together to make up the material.

Now we may focus on a single element, i.e., triangular piece of the material. The second
step is to choose the kind of surface we will use to approximate the solution over the element.
The simplest case is a flat sheet, which is the case we consider. Simple curved sheets are also
possible, which allows for an increase accuracy (higher order approximation) at the expense
of also increasing complexity.

It is the third step that is conceptually difficult, but we will consider a straightforward
way to think about it. Because we approximate the solution over an element in terms of
a surface, the approximate solution is smooth and defined across the entire surface. This
allows us to substitute, the approximate solution back into the partial differential equation
in a manner essentially similar to how we substituted our approximate value of

√
2 back

into the equation x2 − 2 = 0 in the example considered above. The amount by which the
approximate solution fails to satisfy the partial differential equation is called the residual,
just as before. The strategy for solving the partial differential equation over the element,
then, is to find the (flat) surface that minimizes the residual over the element. We can think
of this as minimizing the backward error over the element. This gives rise to a simple set of
equations that we must solve to find the approximate solution over the element.

When we do this for each element the result is a large set of coupled equations that we
can solve. They are coupled because for adjacent elements, which share an edge of a triangle,
the solution must agree along the shared edge. This is what ensures that the solution will
be continuous over the entire material. The fourth step, then, is to solve this large set of
coupled equations, after adjusting the system according to the boundary conditions, which
gives us the value of our approximate solution at each of the nodes defining the triangular
elements. But this is all we need for a solution over the entire material, because fixing the
solution at the nodes, fixes the flat sheet that connects them.
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Once we have followed these four steps we have a solution for the state of the material at
a particular instant of time. We can then carry the material forward in time using whichever
finite difference scheme we have chosen for the time derivative.

advantages and disadvantages

This gives us a picture, though extremely simplified, of the finite element method. It should
be reasonably clear why the finite element method is well-suited to irregular regions, viz.,
because the method does not depend on where one places the nodes. The finite difference
method has to use a different finite difference scheme for nodes that are placed in differ-
ent places, i.e., the form of the equations changes for differently distributed nodes. This
makes is much easier for the finite element method to control error, since additional nodes
may easily be added in places where the state or condition of the material is changing rapidly.

Because finite element methods are complex, they are also complicated to implement.
Consideration of the details of the limitations of finite element methods takes us beyond the
scope of this document. For more details on numerical methods for hydrocodes, including
the advantages and disadvantages of finite element methods, see (Zukas, 2004). For details
on hydrocode modeling in the specific case of impact cratering phenomena, see (Osinski and
Pierazzo, 2012, chapter 17).

3.3 Lagrangian, Eulerian and Arbitrary Lagrangian-Eulerian

In the previous section we discussed the Eulerian and Lagrangian specifications of the flow,
and their associated coordinates. These different coordinate systems have a significant effect
on what kinds of phenomena can be treated numerically and on the complexity of the calcu-
lations that must be performed.

There are a number of features of the Lagrangian approach that make it natural for ma-
terial modeling. Recall that Lagrangian coordinates are in the material frame, they travel
with the material, as opposed to Eulerian coordinates that are in the space frame, material
travels through them. Aside from focusing directly on modeling material dynamics, because
Lagrange coordinates travel with the material the equations become simplified as a result of
eliminating the need to model material transport. This simplifies the equations significantly
since it removes any terms that track material motion. This means that the material deriva-
tive D

Dt =
∂
∂t + v∇⋅ (vector fields) or D

Dt =
∂
∂t + v ⋅ ∇ (scalar fields) is replaced simply with the

partial derivative ∂
∂t . This removes the advection term in the equations of motion (2.12) and

conservation of energy equations (2.11). Since the advective term in (2.12) is nonlinear, and
nonlinear terms are notorious for computational difficulties, this is can be a major advantage
of Lagrangian, or material, coordinates.

There are also a number of other advantages of material coordinates. Because each cell
(finite-differences) or element (finite-elements) of the mesh has a fixed mass, the continuity
equation (2.10) is satisfied automatically, reducing the number of equations that need to be
solved. In the material frame the interfaces between materials are stationary, rather than
moving through space, which makes it much easier to specify and solve both boundary con-
ditions and contact conditions at material interfaces. There are also advantages in terms of
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constitutive equations. As mentioned in section 2.1.3, constitutive equations or equations
of state can sometimes be path-dependent, i.e., depend on the history of the physical state
of the material. This is difficult to account for in Eulerian codes, but easy to handle in
Lagrangian codes because the codes compute the material history and store it in memory.

There are, however a number of limiations of Lagrangian codes. In material coordinates,
the computation is dominated by contact computations. Because hydrocodes deal with high-
energy impacts, the dominant physics occurs on very short time scales, the stresses and
wave propagation across material interfaces must be computed very accurately. Conserva-
tion of linear and angular momentum must also be conserved where there is slippage between
materials. Since the mathematical methods to handle this tend to be very complex, the com-
putational procedures to handle contact-impact have very high computational cost (Zukas,
2004, 128). For this reason, the contact processor, i.e., the subroutine that handles contact-
impact calculations, tends to dominate the time required to run a simulation.

A major limitation of Lagrangian codes for high-energy impact problems is that in these
problems the mesh can become severely distorted, causing the size of the smallest cells or
elements to approach zero. This is a serious problem because the conditions for numerical
stability for time stepping are determined by the size of the smallest cell or element. As
a result, as the size of the smallest cell/element shrinks so does the time step, in order to
maintain stability. Thus, large mesh deformations cause the time steps to become so small
that the computational cost becomes too high to continue the simulation. Additionally, nu-
merical artefacts can develop that render the calculation physically meaningless (Zukas, 2004,
134). This generally requires stopping the code and “rezoning” to define a new undistorted
grid or by “erosion” techniques that remove some particularly distorted elements from the
calculation.

For some problems a pure Lagrangian scheme is infeasible. An alternative in such cases
is to use an Eulerian approach. Since Euler codes use spatial coordinates they must compute
the transport of material. This tends to be handled by dividing each time step into two
computational phases. The first phase is actually a Lagrangian time step, which is used
to compute how the material evolves. This is followed by a second rezoning phase which
involves transforming back to the original undistorted mesh and then computing transport
of the material between cells. A key advantage of this approach is that large material dis-
tortions can be handled unproblematically and without drastically decreasing the time step
size, making them important for high energy impact simulations.

Along with any advantage, however, come certain costs. With Euler codes difficulties
arise in terms of how material interfaces are handled and how transport is calculated. Since
Euler codes have a fixed mesh with material flowing through it, a single cell can contain
portions of multiple materials. As a result, boundaries and interfaces of materials can at
best be determined to within a cell width. A major difficulty for Euler codes, then, is to
handle boundaries. A number of considerations arise here, including how to compute mate-
rial fractions in a cell, how to apply consitutive equations and determine yield strength, and
the order of transport of materials (see Zukas, 2004, p. 211 ff., for more details on interface
handling for Euler codes). Since accurate treatment of interfaces is essential for accurate cal-
culation of material transport, we see that transport calculations are the Eulerian correlate
of contact processing for Lagrangian codes. In a similar manner, it is transport processing
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that dominates the computation in Eulerian codes.

The manner in which Euler codes need to handle boundaries and material interfaces
makes the accurate treatment of interface conditions and surface motions difficult. This can
lead to materials with similar properties being treated as bonded, poor treatment of slippage
between materials, difficulties with handling materials with different strengths within a single
cell, and computational instabilities due to tiny proportions of certain materials in a cell.

Thus, Euler and Lagrange codes are complementary from a modeling point of view since
Lagrange codes do interfaces easily and accurately but cannot handle large distortions and
Euler codes handle large distortions easily and accurately but have trouble treating interfaces
accurately. Consequently, some modern codes attempt to combine the advantages of the two
approach, leading to so-called aribitrary Lagrangian-Eulerian (ALE) codes. In simple terms,
these codes in general allow variation of:

• the length of Lagrangian computations, from one time-step, producing an Euler-equivalent
code, to all time-steps, producing a Lagrangian-equivalent code; and

• the frequency and location of rezoning, from every step and everywhere, producing
an Euler-equivalent code, to only when and where Lagrangian time-steps fail due to
element collapse, for an Lagrangian-type-equivalent code.

ALE codes allow for automatic rezoning, which allows for greater accuracy (higher order)
than user-defined rezones (?, 224). Such codes also allow for computational optimzation by
localizing intense calculations to parts of materials where there are large distortions. Some
codes also allow for Euler treatment of some parts of the system and Lagrangian treatment
of others. Since these codes are still continuum mechanics codes, topology changes due to
fracture or drop formation of materials can be handled but must be done so manually.

The codes most in use by the impact community are simplified arbitrary Lagrangian-
Eulerian (SALE) codes. These codes, packages designed to simplify the use of ALE methods
to simulate high energy impact events, evolved from the original SALE code developed by
Amsden et al. (1980). The package iSALE is a multi-material, multi-rheology shock physics
code developed by Collins, Wünnemann, Ivanov and Melosh. This package includes a custom
deviatoric stress model designed specifically for impacts in geologic materials and an efficient
algorithm for handling porous compaction. See Collins et al. (2004) and Wünnemann et al.
(2006) for details concerning the two dimensional version iSALE-2D. The three dimensional
version, still in the development process,is described by Elbeshausen et al. (2009) and Elbe-
shausen and Wünnemann (2011). The three dimensional version is an important development
in impact cratering studies because the two dimensional codes can only model vertical im-
pact, but impacts are almost always oblique with 45○ being the most typical incident angle.
The iSALE code combines the capacities of other SALE codes for handing multiple mate-
rials with multiple constitutive equations that are used in the impact community, such as
SALES-2, (see Gareth and Melosh, 2002), SALEB, (see, e.g., Ivanov, 2005), and SALE-3MAT
(Wünnemann et al., 2006, 517). For a thorough introduction to Lagrangian and Eulerian
hydrocode methods more generally, see Zukas (2004) and (Benson, 1992).
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3.4 verification and validation

Before moving on to consider some apsects of hyrdocode modeling of impact cratering pro-
cesses, we must briefly mention two crucial steps for ensuring that the results of a hydrocode
simulation will be meaningful: verification; and validation.

Verification involves showing that the code solves the equations accurately. A necessary
condition for an accurate simulation is that it provide an accurate solution to the equations
of the dynamical material model. Thus, verification concerns demonstrating that the code
is numerically stable on certain test problems. This is usually assessed in terms of forward
stability in the sense of a small forward error, which ensures that the precise behaviour of
the simulation accurately reflects the behaviour of the exact solution.12

Assuming that the code is numerically stable, the other crucial step of validation is
required, which requires showing that the computed solution models the target system ac-
curately. This concerns, inter alia, showing that the code recovers experimentally known
behaviour. There are two main ways that a hydrocode can be validated. One way is to com-
pare the results of hydrocode models directly with experimental data available for very well
understood laboratory experiments. For iSALE codes, this has been done by Pierazzo et al.
(2008), Davison et al. (2011) and Miljković et al. (2012). Another is to compare the results of
hydrocodes with the results of other hydrocodes that have already been well validated with
experiment. A thorough benchmarking validation of this sort was performed by Pierazzo
et al. (2008). This work is the result of the first phase of an ongoing collaborative project
called the Impact Hydrocode Benchmark and Validation Project13 organized and conducted
within the impact cratering community, which seeks to develop a standard for comparison
and validation of impact codes. Another important aim of this project is to better understand
the strengths and limitations of different code implementations to prevent incorrect use of
codes. The strongest limitations of impact codes arises from the type, extent and accuracy
or material models. For more details on this see (Pierazzo et al., 2008) and (Osinski and
Pierazzo, 2012, 262-267).

12Although not considered much in impact modeling, this could also be assessed in terms of backward
stability in the sense of a small backward error or residual. This would ensure that the behaviour in the
simulation is the exact behaviour of a very similar dynamical material model, allowing computational error
to be interpreted in the same terms as modeling error. Backward stability in this sense is not typically used
for solutions of partial differential equations because the interpolation required to compute the residual can
be very large for already very expensive computations (Corless and Fillion, 2013). It could, however, be a
useful tool for assessing the results of scientific studies that are less constrained by time-sensitive deadlines.

13See http://www.psi.edu/about/staff/betty/Validation.html.

http://www.psi.edu/about/staff/betty/Validation.html


4 Hydrocode Modeling of Impact Cratering

We conclude with a brief consideration of some more specific aspects of hydrocode modeling
of the impact cratering process. Modeling impact cratering phenomena presents a significant
challenge for a number of reasons, which include fast, high energy processes, poorly under-
sood constitutive behaviour of materials at high pressure and energy, and complex system
composition and geometry. Thus, modeling an impact event accurately is an enormously
complicated affair and is impossible in full detail given current technology. For this reason
there is a trade-off between how much of an impact event can be modeled and detailed accu-
racy of impact processes. Thus, if one wishes to model the entire process of crater formation,
one sacrifices a great deal in terms of accurate description of aspects of the different phases
of the cratering process. On the other hand, if one wishes simulations highly accurate in
detail, then one is limited to modeling only certain parts or aspects of a given phase of the
impact process at any one time.

Given the level of understanding of hydrocode modeling we have from the preceding
sections, we can have some appreciation for the complexities involved in numerical modeling
of high energy wave propagation. Not only do terrestrial and planetary impacts by asteroids
and comets involve high energy wave propagration, however, they involve a variety of such
processes mixed with various structural dynamics processes. For example, the phenomena in
impact cratering include:

• very large stresses, which imply very large strains and strain rates (fast loading and
response times), which requires accurate models of the scaling of stress with strain rate
in the equations of state that can be well-beyond experimentally accessible conditions;

• conditions easily push beyond the elastic limit of materials, which necessitates accurate
constitutive models of plastic deformation as well as structural failure or fracture, which
involves different phenomena dominant at different scales;

• very high shock pressures and shock waves occuring in both the impactor and the
target, which produces multiple wave systems, e.g., hypervelocity (Faster than sound)
shock waves and slower shear and bending waves behind the shock front;

• waves traveling orders of magnitude faster than characteristic times for structural re-
sponse, which results in highly localized deformation occuring before the effects of far
away boundary conditions are felt;

• need to model post failure materials and phase changes, e.g., solid-liquid (impact melt)
and solid-solid (shock metamorphism) transitions, which can require computation of
latent energies of transfomation;

32
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• multiple materials with complex geometries, which also often have poorly understood
constitutive behaviour at high pressures, strains and strain rates.

Because of the complexity of all of these processes, and the large uncertainties involved
in constitutive equations and equations of state, modeling error often dominates over com-
putational error, provided that conditions of numerical stablity are met. Thus, particularly
in shock conditions, there is no practical advantage and significant increase in computational
cost to use second or higher order discretization methods. Thus, linear interpolants are
used for spatial discretization in terms of finite elements or finite differences and explicit
forward difference schemes are often used for time stepping, which allow direct computa-
tion of physical quantities at a given time step in terms of the values at the previous time.
Since the energies at which impact phenomena occur are often experimentally inaccessible, a
great deal of reliance is placed on models for wave transmission that are based on laboratory
experiments with rods and plates (see Zukas, 2004, chapter 7, for details).

4.1 hydrocode mediated inference for impact cratering processes

Due to the experimental inaccessibility and complexity of the behaviour of materials under
physical conditions that occur in impact cratering processes, hydrocodes have become an im-
portant tool for gaining knowledge of the mechanics and dynamics involved in the formation
of impact craters.

The formation process of hypervelocity impact craters, i.e., where the impactor travels
faster than the speed of sound in the target, has been divided into three roughly distinct
phases: contact and compression; excavation; and modification (Gault et al., 1968; Osinski
and Pierazzo, 2012, 3). A further, fourth, stage of chemical and hydrothermal alteration,
which occurs over much longer time scales, is sometimes also included and is discussed in
(Osinski and Pierazzo, 2012, 4,8) and references are provided there.

The contact and compression phase involves the initial impact between the impactor, typ-
ically travelling at 10s of km/s, and the target rock, and the translation of the high kinetic
energy of the impactor to the target. The initial impact produces extremely high pressure
shock waves (order of 100 GPa) in both the target and the impactor. The majority of the
kinetic energy of the impactor is transferred by the shock wave in the target. The dissipation
of the shock wave in the impactor typically results in the complete melting or vaporization
of the impactor (Osinski and Pierazzo, 2012, 4). In addition to very high pressures this stage
also involves very high strains and strain rates of 104-105 s−1 or larger (Zukas, 2004).

An example of the contribution of hydrocode modeling to understanding this part of the
process is the modeling melt production and vaporization during the early phases of impact
event. This is an area where constitutive behaviour is poorly understood, leading to the
importance of hydrocodes. Using a 2D finite difference Eulerian hydrocode, and based on
laboratory observations of hypervelocity impact flows, an early analysis by Okeefe and Ahrens
(1977) on vertical impacts was able to determine a scaling relation for the ratio of melt-to-
vapor production and the energy of the impactor. The scaling behaviour was in agreement
with increase in melting with crater diameter observed in terrestrial craters and inferred
from lunar craters. This was later validated and extended by Pierazzo et al. (1997), who
showed that the region of melt and vapor production is roughly spherical. In the extension
to oblique impacts, which requires 3D hydrocodes, Pierazzo and Melosh (2000) determined



Hydrocodes for Impact Cratering Modeling 34

the decrease in melt volume as a function of impact angle (20% from 90○ to 45○; 50-90% for
30○ down to 15○. This work also showed that for almost all angles (≥ 15○) the volume of melt
is proportional to the volume of the so-called “transient cavity”, which we will now consider.

The excavation phase, which is dominated by the hypervelocity shock wave in the tar-
get sequence, involves the opening of the impact crater and the formation of a “transient
cavity”, which is the temporary cavity formed by the initial movement of target material
produced by the shock wave. The shock wave itself develops into two distinct waves. The
first forms a roughly hemispherical wave travelling downwards, centred roughly at the depth
of penetration of the impactor. The part of this wave that travels upward is reflected at
the surface and travels back downward as rarefaction waves that travel downward. It is the
combination of these waves that provide the forces that move target material in the formation
of the transient cavity. The upper portion of the cavity (excavated zone) consists of melted
target rock and material that is ballistically ejected from the crater. The lower portion of
the cavity (displacement zone) consists of shocked and translated material, which includes
melt-rich material (surface flows) that is emplaced outside of the transient cavity (Osinski
and Pierazzo, 2012, 6). At the end of this phase the transient cavity is filled with a mixture
of melt and impactites.

A contribution of hydrocode modeling in transient crater growth was made by Wünnemann
et al. (2006), who developed a simple model capable of capturing dominant effects of the
porosity of materials in the target sequence. They validated their porous compation model
by showing that it agrees well with data from a wide variety of experiments, from static com-
pation tests on one end to shock compression experiments from impacts on the other. Using
iSALE they then used this porosity compation model to study the effect of porousity and
friction internal to materials on the formation of the transient crater. Comparing porous and
non-porous targets, they found that both porosity and internal friction play an important
limitative role the crater growth.

The final phase of crater modification begins when the motion caused directly by shock
waves stops and the transient crater relaxes and, if it is sufficiently large, begins to collapse
to form the final crater. For large craters (greater than 2-4 km on Earth depending on tar-
get lithology), gravitational forces are strong enough to produce significant motion of the
contents of the transient crater, resulting in complex crater formation. For such craters the
falling material forms a central uplift, an inward and upward motion of material in the tran-
sient cavity. Finally, the initially high walls of the transient crater fall inward and downward,
which involve the motion of large blocks of rock (Osinski and Pierazzo, 2012, 8). In addition
to rapid motion, this last stage can involve processes that extend over geological time scales.

Hydrocode modeling has also played an important role in increasing understanding of
the crater collapse process. As (Pierazzo and Collins, 2004, 13, ff.) point out, the initial
contributions from hydrocode modeling were negative, showing consistently that if standard
strength models of target materials we valid in the impact process, then the formation of
central peaks, peak rings or external rings would not happen. Thus, these hydrocode results
showed that in order to explain observed features of impact craters, the target materials must
be significantly, though temporarily weakend, by shock loading from impact. Although our
understanding of the formation of complex craters is still quite incomplete, hydrocode models
based on strength weakening mechanisms are now able to account for central peak and peak



Hydrocodes for Impact Cratering Modeling 35

ring formation. For example, invoking acoustic fluidization to account for the strength weak-
ening, Collins et al. (2002) showed that the duration of the strength weakening mechanism
determines the difference between the formation of central peaks and peak rings.

Other hydrocode studies have involved broader studies of the entire process, modeling
basin formation and melt production from impact to final crater structure, such as the de-
tailed doctoral study by Potter (2012) of terrestrial and lunar craters. Such broader studies
have also involved modeling crater formation for the large terrestrial craters, viz., Popigai,
Chicxhulub, Vredefort and Sudbury, by (Ivanov, 2005, 386 ff.). Here a detailed model of
crater formation including the formation of the central uplift is developed but not without
limitations in accuracy. Ivanov (2005, 404) point out that full crater formation models af-
ford only limited accuracy, and that increasing accuracy requires modeling distinct phases
of the process separately. Though they have limited accuracy, such models can also be quite
informative when they are broadly successful in capturing known behaviour. In these cases,
the deviations between model predictions and observation provide a guide to determining
the processes responsible for the deviation, thereby providing a focus for future research by
pointing out specific limiations in our understanding.

An interesting final example is that of the hydrocode simulation of the Chicxulub impact
event by Pierazzo et al. (1998) and its role in catastrophic climate change. This example
provide an interesting case of the power of incorporating borehole data into hydrocode mod-
eling. Using borehole samples from the Chicxulub crater, Pierazzo et al. (1998) formulated a
model of the stratigraphy of the target that included the chemical composition of the target
rock. This enabled the prediction of the composition and dynamics of the impact plume
from the event, in order to test specific hypotheses about the Chicxulub extinction event.
This allowed a very detailed model of the impact to be developed and provided a powerful
argument that it is the Chicxulub impact that explains the K-Pg extinction event.

We see, therefore, that though not without their limitations, hydrocode models are a key
component in the study of impact cratering processes and in large measure because of the
theoretical and experimental inaccessibility of the physical conditions that occur at planetary
impact pressures and energies. Consequently, hydrocode models will continue to play a sig-
nificant role in developments in the field in the future. Given that many features of cratering
processes require full 3D modeling to model accurately, future increases in computational
speed and memory handling that make 3D hydrocode modeling cheaper, simpler and more
prevalent are sure to lead to quite significant developments in our understanding than have
been provided largely based on 2D codes.
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